Search results for "Electron-phonon interactions"
showing 5 items of 5 documents
Recombination processes in unintentionally doped GaTe single crystals
2002
Emission spectra of GaTe single crystals in the range of 1.90–1.38 eV have been analyzed at different temperatures and excitation intensities by photoluminescence, photoluminescence excitation, and selective photoluminescence. A decrease in band gap energy with an increase in temperature was obtained from the redshift of the free exciton recombination peak. The energy of longitudinal optical phonons was found to be 14±1 meV. A value of 1.796±0.001 eV for the band gap at 10 K was determined, and the bound exciton energy was found to be 18±0.3 meV. The activation energy of the thermal quenching of the main recombination peaks and of the ones relating to the ionization energy of impurities and…
ELECTRON SPIN RELAXATION PROCESS IN SILICON CRYSTALS
2014
Recently, electrical injection of spin polarization in n-type and p-type silicon has been experimentally carried out up to room-temperature. Despite of these preliminary but promising experimental results, a comprehensive theoretical framework concerning the influence of transport conditions on the phonon-induced spin depolarization process in silicon structures, in a wide range of values of temperature, doping concentration and amplitude of external fields, is still in a developing stage. In order to elucidate the electron transport and spin dynamics of conduction electrons in lightly doped n-type Si crystals we have performed semiclassical multiparticle Monte Carlo simulations and numeric…
Intervalley-scattering-induced electron-phonon energy relaxation in many-valley semiconductors at low temperatures
2005
We report on the effect of elastic intervalley scattering on the energy transport between electrons and phonons in many-valley semiconductors. We derive a general expression for the electron-phonon energy flow rate at the limit where elastic intervalley scattering dominates over diffusion. Electron heating experiments on heavily doped n-type Si samples with electron concentration in the range $3.5-16.0\times 10^{25}$ m$^{-3}$ are performed at sub-1 K temperatures. We find a good agreement between the theory and the experiment.
Monte Carlo Simulation of Spin Relaxation of Conduction Electrons in Silicon
2014
Recently, electrical injection of spin polarization in n-type and p-type silicon up to room-temperature has been experimental- ly carried out. Despite of these promising experimental results, a comprehensive theoretical framework concerning the influence of transport conditions on the spin depolarization process in silicon structures, in a wide range of values of temperature, doping concentration and amplitude of external fields, is still in a developing stage. In this contribution we use a semiclassical multiparti- cle Monte Carlo approach to simulate the electron transport and spin dynamics in lightly doped n-type Si crystals and numerically calculate the spin lifetimes of drifting electr…
Electron-phonon heat transport and electronic thermal conductivity in heavily doped silicon-on-insulator film
2003
Electron–phonon interaction and electronic thermal conductivity have been investigated in heavily doped silicon at subKelvin temperatures. The heat flow between electron and phonon systems is found to be proportional to T6. Utilization of a superconductor–semiconductor–superconductor thermometer enables a precise measurement of electron and substrate temperatures. The electronic thermal conductivity is consistent with the Wiedemann–Franz law. Peer reviewed